Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.547
Filtrar
1.
Infect Dis Model ; 9(2): 569-600, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558959

RESUMO

This study introduces a novel SI2HR model, where "I2" denotes two infectious classes representing asymptomatic and symptomatic infections, aiming to investigate and analyze the cost-effective optimal control measures for managing COVID-19. The model incorporates a novel concept of infectious density-induced additional screening (IDIAS) and accounts for treatment saturation. Furthermore, the model considers the possibility of reinfection and the loss of immunity in individuals who have previously recovered. To validate and calibrate the proposed model, real data from November-December 2022 in Hong Kong are utilized. The estimated parameters obtained from this calibration process are valuable for prediction purposes and facilitate further numerical simulations. An analysis of the model reveals that delays in screening, treatment, and quarantine contribute to an increase in the basic reproduction number R0, indicating a tendency towards endemicity. In particular, from the elasticity of R0, we deduce that normalized sensitivity indices of baseline screening rate (θ), quarantine rates (γ, αs), and treatment rate (α) are negative, which shows that delaying any of these may cause huge surge in R0, ultimately increases the disease burden. Further, by the contour plots, we note the two-parameter behavior of the infectives (both symptomatic and asymptomatic). Expanding upon the model analysis, an optimal control problem (OCP) is formulated, incorporating three control measures: precautionary interventions, boosted IDIAS, and boosted treatment. The Pontryagin's maximum principle and the forward-backward sweep method are employed to solve the OCP. The numerical simulations highlight that enhanced screening and treatment, coupled with preventive interventions, can effectively contribute to sustainable disease control. However, the cost-effectiveness analysis (CEA) conducted in this study suggests that boosting IDIAS alone is the most economically efficient and cost-effective approach compared to other strategies. The CEA results provide valuable insights into identifying specific strategies based on their cost-efficacy ranking, which can be implemented to maximize impact while minimizing costs. Overall, this research offers significant insights for policymakers and healthcare professionals, providing a framework to optimize control efforts for COVID-19 or similar epidemics in the future.

2.
Front Cell Infect Microbiol ; 14: 1381877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572316

RESUMO

Most of vaccinees and COVID-19 convalescents can build effective anti-SARS-CoV-2 humoral immunity, which helps preventing infection and alleviating symptoms. However, breakthrough viral infections caused by emerging SARS-CoV-2 variants, especially Omicron subvariants, still pose a serious threat to global health. By monitoring the viral infections and the sera neutralization ability of a long-tracked cohort, we found out that the immune evasion of emerging Omicron subvariants and the decreasing neutralization led to the mini-wave of SARS-CoV-2 breakthrough infections. Meanwhile, no significant difference had been found in the infectivity of tested SARS-CoV-2 variants, even though the affinity between human angiotensin-converting enzyme 2 (hACE2) and receptor-binding domain (RBDs) of tested variants showed an increasing trend. Notably, the immune imprinting of inactivated COVID-19 vaccine can be relieved by infections of BA.5.2 and XBB.1.5 variants sequentially. Our data reveal the rising reinfection risk of immune evasion variants like Omicron JN.1 in China, suggesting the importance of booster with updated vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Infecções Irruptivas , Estudos de Coortes , Evasão da Resposta Imune , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
J Travel Med ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591115

RESUMO

Overall effectiveness of infection in preventing reinfection with SARS-CoV-2 JN.1 variant was estimated at 1.8% (95% CI: -9.3-12.6%), and demonstrated rapid decline over time since the previous infection, decreasing from 82.4% (95% CI: 40.9 to 94.7%) within 3 to less than 6 months, to a negligible level after one year.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38574252

RESUMO

There is a dearth of medical literature that characterizes the experience of correctional health care workers (HCWs) during the COVID-19 pandemic. We performed a retrospective chart review of the results of an ongoing universal SARS-CoV-2 testing program for New Jersey correctional system HCWs and describe their presenting symptoms, perceived exposure, and demographic characteristics during the initial (March 15, 2020, to August 31, 2020) and Omicron (March 1, 2022, to August 31, 2022) COVID-19 surges. Analysis included 123 eligible records. In both surges, nurses had a high proportion of infections and cough was the most commonly reported symptom. Fever was more than twice as commonly reported in the initial surge. During the Omicron surge, nasal symptoms predominated (39.5% [95% CI: 28.4-51.4]) compared with the initial surge (8.5% [95% CI: 2.4-20.4]). Perceived exposure source was predominantly work related during the initial surge and multiple other sources of exposure were identified during the Omicron surge. Ninety-six percent of HCWs received a COVID-19 booster shot by February 2022. The reinfection rate was less than 10% for our initial cohort. Presenting symptoms correlated with the circulating variant. Mass vaccination of staff, the lower virulence of the Omicron variant, and possibly prior infection likely contributed to the milder illness experienced during the Omicron surge.

5.
JCI Insight ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573774

RESUMO

The viral kinetics of documented SARS-CoV-2 infections exhibit a high degree of inter-individual variability. We identified six distinct viral shedding patterns, which differed according to peak viral load, duration, expansion rate and clearance rate, by clustering data from 768 infections in the National Basketball Association cohort. Omicron variant infections in previously vaccinated individuals generally led to lower cumulative shedding levels of SARS-CoV-2 than other scenarios. We then developed a mechanistic mathematical model that recapitulated 1510 observed viral trajectories, including viral rebound and cases of reinfection. Lower peak viral loads were explained by a more rapid and sustained transition of susceptible cells to a refractory state during infection, as well as an earlier and more potent late, cytolytic immune response. Our results suggest that viral elimination occurs more rapidly during omicron infection, following vaccination, and following re-infection due to enhanced innate and acquired immune responses. Because viral load has been linked with COVID-19 severity and transmission risk, our model provides a framework for understanding the wide range of observed SARS-CoV-2 infection outcomes.

7.
RMD Open ; 10(2)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599653

RESUMO

OBJECTIVES: To assess incidence, severity and predictors of COVID-19, including protective post-vaccination levels of antibodies to the receptor-binding domain of SARS-CoV-2 spike protein (anti-RBD), informing further vaccine strategies for patients with immune-mediated inflammatory diseases (IMIDs) on immunosuppressive medication. METHODS: IMIDs on immunosuppressives and healthy controls (HC) receiving SARS-CoV-2 vaccines were included in this prospective observational study. COVID-19 and outcome were registered and anti-RBD antibodies measured 2-5 weeks post-immunisation. RESULTS: Between 15 February 2021 and 15 February 2023, 1729 IMIDs and 350 HC provided blood samples and self-reported COVID-19. The incidence of COVID-19 was 66% in patients and 67% in HC, with re-infection occurring in 12% of patients. Severe COVID-19 was recorded in 22 (2%) patients and no HC. No COVID-19-related deaths occurred. Vaccine-induced immunity gave higher risk of COVID-19 (HR 5.89 (95% CI 4.45 to 7.80)) than hybrid immunity. Post-immunisation anti-RBD levels <6000 binding antibody units/mL were associated with an increased risk of COVID-19 following three (HR 1.37 (95% CI 1.08 to 1.74)) and four doses (HR 1.28 (95% CI 1.02 to 1.62)), and of COVID-19 re-infection (HR 4.47 (95% CI 1.87 to 10.67)). CONCLUSION: Vaccinated patients with IMID have a low risk of severe COVID-19. Hybrid immunity lowers the risk of infection. High post-immunisation anti-RBD levels protect against COVID-19. These results suggest that knowledge on COVID-19 history, and assessment of antibody levels post-immunisation can help individualise vaccination programme series in high-risk individuals. TRIAL REGISTRATION NUMBER: NCT04798625.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Vacinas , Humanos , Incidência , Vacinas contra COVID-19/uso terapêutico , Estudos Prospectivos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Imunização , Terapia de Imunossupressão , Agentes de Imunomodulação , Imunidade Adaptativa
8.
Health Sci Rep ; 7(4): e2016, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605725

RESUMO

Background: COVID-19 has caused severe morbidity and mortality worldwide. After the end of the dynamic zero-COVID policy in China in December, 2022, concerns regarding reinfection were raised while little was known due to the lack of surveillance data in this country. Aims: This study reviews the probability, risk factors, and severity of severe acute respiratory syndrome coronavirus 2 Omicron variant reinfection, as well as the interval between infections, risk of onward transmission by reinfected cases, and the role of booster vaccination against reinfection. Sources: References for this review were identified through searches of PubMed and Web of Science up to September 24, 2023. Results: The rate of reinfection ranges from 3.1% to 13.0%. Factors associated with a higher risk of reinfection include being female, having comorbidities, and being unvaccinated. Reinfection with the BA.4 or BA.5 variant occurs approximately 180 days after the initial infection. Reinfections are less clinically severe than primary infections, and there is evidence of lower transmissibility. The debate surrounding the effectiveness and feasibility of booster vaccinations in preventing reinfection continues. Conclusions: The reinfection rate during the Omicron epidemic is significantly higher than in previous epidemic periods. However, the symptoms and infectivity of reinfection were weaker than those of the prior infection. Medical staff and individuals at high risk of reinfection should be vigilant. The efficacy of booster vaccinations in reducing reinfection is currently under debate.

9.
Infect Genet Evol ; 120: 105590, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574833

RESUMO

The presence of different mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome can be related to changes in coronavirus disease (COVID-19) infection. Besides, these viral alterations associated with factors such as massive number of positive cases, vaccination and reinfections can be important in the viral evolution process. As well as, mutations found at low frequencies may have a more neutral action and consequently be less inclined to negative selection, facilitating their spread through the population. Related to that, we aimed to present mutations that are possibly relevant in the process of viral evolution found in 115 SARS-CoV-2 sequences from samples of individuals residing in the metropolitan region of Porto Alegre in the state of Rio Grande do Sul, Brazil. The genome from clinical samples was sequenced using High-Throughput Sequencing (HTS) and analyzed using a workflow to map reads and find variations/SNPs. The samples were separated into 3 groups considering the sample lineage. Of the total number of analyzed sequences, 35 were from the Gamma lineage, 35 from Delta and 45 from Omicron. Amino acid changes present in frequencies lower than 80% of the reads in the sequences were evaluated. 11 common mutations among the samples were found in the Gamma lineage, 1 in the ORF1ab gene, 7 in the S gene, 2 in the ORF6 gene and 1 in the ORF7a gene. While in the Delta lineage, a total of 11 mutations distributed in the ORF1ab, S, ORF7a and N genes, 2, 7, 1 and 1 mutation were found in each gene, respectively. And finally, in the Omicron, 16 mutations were identified, 2 in the ORF1ab gene, 12 in the S gene and 2 in the M gene. In conclusion, we emphasize that genomic surveillance can be a useful tool to assess how mutations play a key role in virus adaptation, and its process of susceptibility to new hosts showing the possible signs of viral evolution.


Assuntos
COVID-19 , Genoma Viral , Mutação , SARS-CoV-2 , SARS-CoV-2/genética , Humanos , COVID-19/virologia , COVID-19/epidemiologia , Brasil/epidemiologia , Filogenia , Evolução Molecular
10.
Int J Infect Dis ; : 107048, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609036

RESUMO

OBJECTIVES: Prior studies show that long COVID has a heterogeneous presentation. Whether specific risk factors are related to subclusters of long COVID remains unknown. This study aimed to determine pre-pandemic predictors of long COVID and symptom clustering. METHODS: 3022 participants of a panel representative of the Dutch population completed an online survey about long COVID symptoms. Data was merged to 2018/2019 panel data covering sociodemographic, medical, and psychosocial predictors. A total of 415 participants were classified as having long COVID. K-means clustering was used to identify patient clusters. Multivariate and lasso regression was used to identify relevant predictors compared to a COVID-19 positive control group. RESULTS: Predictors of long COVID included Western ethnicity, BMI, chronic disease, COVID-19 reinfections, severity, and symptoms, lower self-esteem, and higher positive affect (AUC=0.80, 95%CI 0.73-0.86). Four clusters were identified: a low and a high symptom severity cluster, a smell-taste and respiratory symptoms cluster, and a neuro-cognitive, psychosocial, and inflammatory symptom cluster. Predictors for the different clusters included regular health complaints, healthcare use, fear of COVID-19, anxiety, depressive symptoms, and neuroticism. CONCLUSIONS: A combination of sociodemographic, medical, and psychosocial factors predicted long COVID. Heterogenous symptom clusters suggest that there are different phenotypes of long COVID presentation.

11.
J Nepal Health Res Counc ; 21(4): 651-658, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38616598

RESUMO

BACKGROUND: Vaccination against COVID-19 for Nepalese was initiated in January 2021 for various age groups. People were anxious about receiving the vaccines and were concerned about the safety profile of the vaccine they received. In this study, we have tried to observe the Adverse Events Following Immunization of two different vaccines namely COVISHIELD (ChAdOx1 nCOV-19) and VERO CELL (CZ02 strain), used in different phases of vaccination by the government of Nepal. METHODS: We conducted a cross-sectional study among people who received COVID-19 vaccines in this study using a self-administered questionnaire.  Data was cleaned and then exported to IBM SPSS v.20 for analysis, Chi-square test was used to see the association between different variables and a p-value<0.05 was considered statistically significant. RESULTS: Out of 303 respondents, all had received the first and 270 participants had received the second dose of the COVID-19 vaccine, among which, 133 (43.89%) reported at least one side effect after the first dose of vaccination while 58 (21.48%) had self-reported side effects after the second dose of vaccination. Seventeen percent of the respondents had COVID-19 infection within the past 3 months before receiving COVID-19 vaccine. Three percent of participants had re-infection with COVID-19 after receiving the first or the second dose of the COVID-19 vaccine. Among participants who experienced adverse events, 42% and 62.1% of participants experienced mild adverse events following the first dose and second dose of the vaccine, respectively.  Conclusions: The adverse events following immunization for both vaccines after both doses of vaccination were quite low, with 43.89% of participants reporting side effects after the first dose and 21.48% of participants reporting side effects after the second dose. Adverse events were most frequently reported within 24 hours of vaccination and were mostly mild. There was no statistical significance of adverse events between both vaccines.


Assuntos
COVID-19 , ChAdOx1 nCoV-19 , Chlorocebus aethiops , Animais , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Estudos Transversais , Células Vero , Nepal/epidemiologia , Programas de Imunização
12.
Epidemiology ; 35(3): 368-371, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630510

RESUMO

This article discusses causal interpretations of epidemiologic studies of the effects of vaccination on sequelae after acute severe acute respiratory syndrome coronavirus 2 infection. To date, researchers have tried to answer several different research questions on this topic. While some studies assessed the impact of postinfection vaccination on the presence of or recovery from post-acute coronavirus disease 2019 syndrome, others quantified the association between preinfection vaccination and postacute sequelae conditional on becoming infected. However, the latter analysis does not have a causal interpretation, except under the principal stratification framework-that is, this comparison can only be interpreted as causal for a nondiscernible stratum of the population. As the epidemiology of coronavirus disease 2019 is now nearly entirely dominated by reinfections, including in vaccinated individuals, and possibly caused by different Omicron subvariants, it has become even more important to design studies on the effects of vaccination on postacute sequelae that address precise causal questions and quantify effects corresponding to implementable interventions.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , SARS-CoV-2 , Vacinação , Progressão da Doença
13.
Nat Commun ; 15(1): 3315, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632311

RESUMO

This study investigates the humoral and cellular immune responses and health-related quality of life measures in individuals with mild to moderate long COVID (LC) compared to age and gender matched recovered COVID-19 controls (MC) over 24 months. LC participants show elevated nucleocapsid IgG levels at 3 months, and higher neutralizing capacity up to 8 months post-infection. Increased spike-specific and nucleocapsid-specific CD4+ T cells, PD-1, and TIM-3 expression on CD4+ and CD8+ T cells were observed at 3 and 8 months, but these differences do not persist at 24 months. Some LC participants had detectable IFN-γ and IFN-ß, that was attributed to reinfection and antigen re-exposure. Single-cell RNA sequencing at the 24 month timepoint shows similar immune cell proportions and reconstitution of naïve T and B cell subsets in LC and MC. No significant differences in exhaustion scores or antigen-specific T cell clones are observed. These findings suggest resolution of immune activation in LC and return to comparable immune responses between LC and MC over time. Improvement in self-reported health-related quality of life at 24 months was also evident in the majority of LC (62%). PTX3, CRP levels and platelet count are associated with improvements in health-related quality of life.


Assuntos
COVID-19 , Síndrome Pós-COVID-19 Aguda , Humanos , Linfócitos T CD8-Positivos , Qualidade de Vida , SARS-CoV-2 , Anticorpos Antivirais
14.
Nat Commun ; 15(1): 3463, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658564

RESUMO

Under-reporting of COVID-19 and the limited information about circulating SARS-CoV-2 variants remain major challenges for many African countries. We analyzed SARS-CoV-2 infection dynamics in Addis Ababa and Jimma, Ethiopia, focusing on reinfection, immunity, and vaccination effects. We conducted an antibody serology study spanning August 2020 to July 2022 with five rounds of data collection across a population of 4723, sequenced PCR-test positive samples, used available test positivity rates, and constructed two mathematical models integrating this data. A multivariant model explores variant dynamics identifying wildtype, alpha, delta, and omicron BA.4/5 as key variants in the study population, and cross-immunity between variants, revealing risk reductions between 24% and 69%. An antibody-level model predicts slow decay leading to sustained high antibody levels. Retrospectively, increased early vaccination might have substantially reduced infections during the delta and omicron waves in the considered group of individuals, though further vaccination now seems less impactful.


Assuntos
Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Humanos , Etiópia/epidemiologia , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Estudos Soroepidemiológicos , Masculino , Adulto , Feminino , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Criança , Idoso , Pré-Escolar , Vacinação , Vacinas contra COVID-19/imunologia , Estudos Retrospectivos , Reinfecção/epidemiologia , Reinfecção/imunologia , Reinfecção/virologia
15.
Epidemiologia (Basel) ; 5(2): 167-186, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38651389

RESUMO

Our goal was to determine the cellular immune response (CIR) in a sample of the Borriana COVID-19 cohort (Spain) to identify associated factors and their relationship with infection, reinfection and sequelae. We conducted a nested case-control study using a randomly selected sample of 225 individuals aged 18 and older, including 36 individuals naïve to the SARS-CoV-2 infection and 189 infected patients. We employed flow-cytometry-based immunoassays for intracellular cytokine staining, using Wuhan and BA.2 antigens, and chemiluminescence microparticle immunoassay to detect SARS-CoV-2 antibodies. Logistic regression models were applied. A total of 215 (95.6%) participants exhibited T-cell response (TCR) to at least one antigen. Positive responses of CD4+ and CD8+ T cells were 89.8% and 85.3%, respectively. No difference in CIR was found between naïve and infected patients. Patients who experienced sequelae exhibited a higher CIR than those without. A positive correlation was observed between TCR and anti-spike IgG levels. Factors positively associated with the TCR included blood group A, number of SARS-CoV-2 vaccine doses received, and anti-N IgM; factors inversely related were the time elapsed since the last vaccine dose or infection, and blood group B. These findings contribute valuable insights into the nuanced immune landscape shaped by SARS-CoV-2 infection and vaccination.

16.
Heliyon ; 10(7): e28941, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617937

RESUMO

Objectives: Different SARS-CoV-2 variants can differentially affect the prevalence of Post Covid-19 Condition (PCC). This prospective study assesses prevalence and severity of symptoms three months after an Omicron infection, compared to Delta, test-negative and population controls. This study also assesses symptomology after reinfection and breakthrough infections. Methods: After a positive SARS-CoV-2 test, cases were classified as Omicron or Delta based on ≥ 85% surveillance prevalence. Three months after enrolment, participants indicated point prevalence for 41 symptoms and severity, using validated questionnaires for four symptoms. PCC prevalence was estimated as the difference in prevalence of at least one significantly elevated symptom, identified by permutation test, in cases compared to population controls. Results: At three months follow-up, five symptoms and severe dyspnea were significantly elevated in Omicron cases (n = 4138) compared to test-negative (n = 1672) and population controls (n = 2762). PCC prevalence was 10·4% for Omicron cases and 17·7% for Delta cases (n = 6855). In Omicron cases, severe fatigue and dyspnea were more prevalent in reinfected than primary infected, while severity of symptoms did not significantly differ between cases with a booster or primary vaccination course. Conclusions: Prevalence of PCC is 41% lower after Omicron than Delta at three months. Reinfection seems associated with more severe long-term symptoms compared to first infection.

17.
PLoS Med ; 21(4): e1004263, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573873

RESUMO

BACKGROUND: Acute neurological manifestation is a common complication of acute Coronavirus Disease 2019 (COVID-19) disease. This retrospective cohort study investigated the 3-year outcomes of patients with and without significant neurological manifestations during initial COVID-19 hospitalization. METHODS AND FINDINGS: Patients hospitalized for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection between 03/01/2020 and 4/16/2020 in the Montefiore Health System in the Bronx, an epicenter of the early pandemic, were included. Follow-up data was captured up to 01/23/2023 (3 years post-COVID-19). This cohort consisted of 414 patients with COVID-19 with significant neurological manifestations and 1,199 propensity-matched patients (for age and COVID-19 severity score) with COVID-19 without neurological manifestations. Neurological involvement during the acute phase included acute stroke, new or recrudescent seizures, anatomic brain lesions, presence of altered mentation with evidence for impaired cognition or arousal, and neuro-COVID-19 complex (headache, anosmia, ageusia, chemesthesis, vertigo, presyncope, paresthesias, cranial nerve abnormalities, ataxia, dysautonomia, and skeletal muscle injury with normal orientation and arousal signs). There were no significant group differences in female sex composition (44.93% versus 48.21%, p = 0.249), ICU and IMV status, white, not Hispanic (6.52% versus 7.84%, p = 0.380), and Hispanic (33.57% versus 38.20%, p = 0.093), except black non-Hispanic (42.51% versus 36.03%, p = 0.019). Primary outcomes were mortality, stroke, heart attack, major adverse cardiovascular events (MACE), reinfection, and hospital readmission post-discharge. Secondary outcomes were neuroimaging findings (hemorrhage, active and prior stroke, mass effect, microhemorrhages, white matter changes, microvascular disease (MVD), and volume loss). More patients in the neurological cohort were discharged to acute rehabilitation (10.39% versus 3.34%, p < 0.001) or skilled nursing facilities (35.75% versus 25.35%, p < 0.001) and fewer to home (50.24% versus 66.64%, p < 0.001) than matched controls. Incidence of readmission for any reason (65.70% versus 60.72%, p = 0.036), stroke (6.28% versus 2.34%, p < 0.001), and MACE (20.53% versus 16.51%, p = 0.032) was higher in the neurological cohort post-discharge. Per Kaplan-Meier univariate survival curve analysis, such patients in the neurological cohort were more likely to die post-discharge compared to controls (hazard ratio: 2.346, (95% confidence interval (CI) [1.586, 3.470]; p < 0.001)). Across both cohorts, the major causes of death post-discharge were heart disease (13.79% neurological, 15.38% control), sepsis (8.63%, 17.58%), influenza and pneumonia (13.79%, 9.89%), COVID-19 (10.34%, 7.69%), and acute respiratory distress syndrome (ARDS) (10.34%, 6.59%). Factors associated with mortality after leaving the hospital involved the neurological cohort (odds ratio (OR): 1.802 (95% CI [1.237, 2.608]; p = 0.002)), discharge disposition (OR: 1.508 (95% CI [1.276, 1.775]; p < 0.001)), congestive heart failure (OR: 2.281 (95% CI [1.429, 3.593]; p < 0.001)), higher COVID-19 severity score (OR: 1.177 (95% CI [1.062, 1.304]; p = 0.002)), and older age (OR: 1.027 (95% CI [1.010, 1.044]; p = 0.002)). There were no group differences in radiological findings, except that the neurological cohort showed significantly more age-adjusted brain volume loss (p = 0.045) than controls. The study's patient cohort was limited to patients infected with COVID-19 during the first wave of the pandemic, when hospitals were overburdened, vaccines were not yet available, and treatments were limited. Patient profiles might differ when interrogating subsequent waves. CONCLUSIONS: Patients with COVID-19 with neurological manifestations had worse long-term outcomes compared to matched controls. These findings raise awareness and the need for closer monitoring and timely interventions for patients with COVID-19 with neurological manifestations, as their disease course involving initial neurological manifestations is associated with enhanced morbidity and mortality.


Assuntos
COVID-19 , Acidente Vascular Cerebral , Humanos , Feminino , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/terapia , SARS-CoV-2 , Estudos Retrospectivos , Seguimentos , Assistência ao Convalescente , Alta do Paciente , Convulsões , Acidente Vascular Cerebral/epidemiologia
18.
IJID Reg ; 10: 235-239, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532742

RESUMO

Objectives: We evaluated the protection afforded by SARS-CoV-2 infection-induced immunity against reinfection among working-age vaccinated individuals during a calendar period from June to December 2022 when Omicron BA.5 was the dominating subvariant in Scania County, Sweden. Methods: The study cohort (n = 71,592) mainly consisted of health care workers. We analyzed 4144 infected cases during the Omicron BA.5 dominance and 41,440 sex- and age-matched controls with conditional logistic regression. Results: The average protection against reinfection was marginal (16%, 95% confidence interval [CI] 7-23%) during the study period but substantially higher for recent infections. Recent infection (3-6 months) with Omicron BA.2 and BA.5 offered strong protection (86%, 95% CI 68-94% and 78%, 95% CI 69-84%), whereas more distant infection (6-12 months) with Omicron BA.1, BA.2, and the variants before Omicron offered marginal or no protection. Conclusions: These findings suggest that infection-induced immunity contributes to short-term population protection against infection with the subvariant BA.5 among working-age vaccinated individuals but wanes considerably with time, independent of the virus variant.

19.
Front Med (Lausanne) ; 11: 1363045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529118

RESUMO

Introduction: Reinfections are increasingly becoming a feature in the epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, accurately defining reinfection poses methodological challenges. Conventionally, reinfection is defined as a positive test occurring at least 90 days after a previous infection diagnosis. Yet, this extended time window may lead to an underestimation of reinfection occurrences. This study investigated the prospect of adopting an alternative, shorter time window for defining reinfection. Methods: A longitudinal study was conducted to assess the incidence of reinfections in the total population of Qatar, from February 28, 2020 to November 20, 2023. The assessment considered a range of time windows for defining reinfection, spanning from 1 day to 180 days. Subgroup analyses comparing first versus repeat reinfections and a sensitivity analysis, focusing exclusively on individuals who underwent frequent testing, were performed. Results: The relationship between the number of reinfections in the population and the duration of the time window used to define reinfection revealed two distinct dynamical domains. Within the initial 15 days post-infection diagnosis, almost all positive tests for SARS-CoV-2 were attributed to the original infection. However, surpassing the 30-day post-infection threshold, nearly all positive tests were attributed to reinfections. A 40-day time window emerged as a sufficiently conservative definition for reinfection. By setting the time window at 40 days, the estimated number of reinfections in the population increased from 84,565 to 88,384, compared to the 90-day time window. The maximum observed reinfections were 6 and 4 for the 40-day and 90-day time windows, respectively. The 40-day time window was appropriate for defining reinfection, irrespective of whether it was the first, second, third, or fourth occurrence. The sensitivity analysis, confined to high testers exclusively, replicated similar patterns and results. Discussion: A 40-day time window is optimal for defining reinfection, providing an informed alternative to the conventional 90-day time window. Reinfections are prevalent, with some individuals experiencing multiple instances since the onset of the pandemic.

20.
Cureus ; 16(2): e54406, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38505461

RESUMO

Aim The aim of the study is to describe the antibody response after COVID-19 infection and assess its effectiveness against reinfection. Background COVID-19 has recently emerged as a contagious infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This infection is followed by a humoral immune antibody response, which may remain in the blood for a number of weeks. Studies have shown that antibodies protect against reinfection for at least seven months. The current study is aimed at investigating the persistence of circulating SARS-CoV-2 antibodies after COVID-19 infection and its behavior over 18 months of follow-up period, in addition to assessing the risk of reinfection of COVID-19 in unvaccinated individuals. Methodology A longitudinal historical cohort study of 3378 COVID-19 recovered individuals in connection with the Amir Cup football tournament held in Qatar, in December 2020 was analyzed. The health records of study participants were followed for a maximum of 18 months after serology testing or until the first dose of COVID-19 vaccination to detect any evidence of recurrent infection. Results The study found a statistically significant association between recurrence risk and the duration of risk exposure since the first COVID-19 episode. Compared to those with the lowest risk of exposure to reinfection (shortest duration after first infection) those beyond 299 days of at-risk exposure since the first episode, have a 51-fold higher risk of developing recurrent COVID-19. Conclusion Immunity developed after primary infection with SARS-CoV-2 may protect against reinfection from subsequent exposure to the virus in seropositive individuals up to nine months post-infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...